Higher Dimensional Arrays In R Programming

 

Higher Dimensional Arrays

A higher dimensional array is an array with more than two dimensions. In R programming language, a higher dimensional array can be created using the array() function.

Syntax:                          array(data = NA, dim = length(data), dimnames = NULL)

Parameters:

l     data: A vector or matrix containing the data for the array.

l     dim: A vector of integers specifying the dimensions of the array.

l     dimnames: An optional list of character vectors giving the names of the dimensions.

Ø    Types of Higher Dimensional Arrays:

There are several types of higher dimensional arrays in R, such as:

l     Three-dimensional arrays

l     Four-dimensional arrays

l     Five-dimensional arrays

l     n-dimensional arrays.

Creating a Higher Dimensional Array:

To create a three-dimensional array in R, we can use the array() function.

For example, let's create a 3x3x2 array:

my_array <- array(1:18, dim=c(3,3,2))                                     # create a 3x3x2 array

print(my_array)                                                                              # print the array

Output:

, , 1

     [,1] [,2] [,3]

[1,]    1    4    7

[2,]    2    5    8

[3,]    3    6    9

, , 2

     [,1] [,2] [,3]

[1,]   10   13   16

[2,]   11   14   17

[3,]   12   15   18

Ø    Accessing and Modifying a Higher Dimensional Array:

We can access and modify the elements of a higher dimensional array using the same indexing methods as for a matrix.

For example, accessing and modifying the elements in the second row, third column, and first layer of the above array.

my_array[2,3,1]     # access the element in the second row, third column, and first layer

my_array[2,3,1] <- 20    # modify the element in the second row, third column, and first layer

print(my_array)                  # print the modified array

Output:

[1] 8

, , 1

     [,1] [,2] [,3]

[1,]    1    4    7

[2,]    2    5   20

[3,]    3    6    9

, , 2

     [,1] [,2] [,3]

[1,]   10   13   16

[2,]   11   14   17

[3,]   12   15   18

Ø    Naming Columns and Rows in a Higher Dimensional Array:

We can name the rows, columns, and layers of a higher dimensional array using the dimnames() function.

For example, let's name the rows, columns, and layers of the above array:

# name the rows, columns, and layers of the array

dimnames(my_array) <- list(c("row1", "row2", "row3"), c("col1", "col2", "col3"))

Output :

      col1 col2 col3

row1   ...  ...  ...

row2   ...  ...  ...

row3   ...  ...  ...

Ø    Manipulating Array Elements

As the array is made up of matrices in multiple dimensions, the operations on elements of the array are carried out by accessing elements of the matrices.

There are various different operations can be performed on Arrays.

Example:

# Create two vectors of different lengths.

vector1 <- c(5, 9, 3)

vector2 <- c(10, 11, 12, 13, 14, 15)

# Take these vectors as input to the array.

array1 <- array(c(vector1, vector2), dim = c(3, 3, 2))

# Create two vectors of different lengths.

vector3 <- c(9, 1, 0)

vector4 <- c(6, 0, 11, 3, 14, 1, 2, 6, 9)

array2 <- array(c(vector1, vector2), dim = c(3, 3, 2))

# create matrices from these arrays.

matrix1 <- array1[,,2]

matrix2 <- array2[,,2]

# Add the matrices.

result <- matrix1 + matrix2

print(result)

Output:

    [,1] [,2] [,3]

[1,]   10   20   26

[2,]   18   22   28

[3,]    6   24   30


No comments:

Post a Comment

R Programming Language

Data Analytics and the key concepts and techniques of R language

Data Analytics  Data analytics is the process of examining, cleaning, transforming, and modeling data to extract useful information and insi...